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1 Introduction 

The purpose of this document is to describe the steps for computing the Initial Margins 

Expected Shortfall of the portfolio subject to margining.  

The securities to which the process described in this document is applied are the following: 

1) Italian government bonds: 

2) Spanish government bonds: 

3) Irish government bonds: 

4) Portuguese government bonds: 

Therefore, corporate bonds and government bonds that are not part of the MTS GC-

EXTRA basket are currently excluded from the application of the Expected Shortfall 

computation (the current Initial Margins computation methodology based on SPAN-like 

margin intervals therefore remaining in force). 

Cash-flow mapping 

First, the cash flows of each security belonging to the portfolio subject to margining are 

assigned to the proper risk factors. In particular, the current market value of each security is 

split onto its cash flows (each having its own duration), which are subsequently mapped 

onto the proper tenors of the sovereign zero-coupon (ZC) spot curve which the security refers to 

(e.g. Italian ZC curve for Italian government bonds).  

Cash-flow mapping is applied to a subset of the Clearing Member’s portfolio composed only 

of cash and repo positions, as for forward starting repo positions, as illustrated in the Mark-to-

Market Margins module, the exposure to the bond price movements is both long and short, 

thus resulting in a net 0 exposure. 

Price scenarios 

Then, price variation scenarios, both unscaled and EWMA-scaled, are computed for the ZC curves 

tenors impacted. These scenarios will be employed in the revaluation of the margined 

portfolio. 

In particular, the scaling methodology is based on the introduction of a so-called smoothing 

factor (model parameter), through which it is possible to differently weigh observations of the 

time series based on current volatility regime. The scaling process consists of the following 

steps: 

1) retrieving rate time series of the tenors of the ZC curves; 

2) converting rate time series into price time series; 

3) computing (unscaled) relative price returns; 

4) computing EWMA volatilities; 
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5) computing scaled relative price returns; 

6) defining unscaled price scenarios; 

7) defining scaled price scenarios. 

Expected Shortfall  

Once the (market value of the) cash flows of the portfolio subject to margining have been 

mapped onto the proper ZC curve tenors and the set of scaled and unscaled price scenarios for 

these tenors has been defined, the portfolio must be revalued in each of its aforementioned 

cash flows and price scenarios. The comparison between the total value of the revalued 

portfolio and its current market value yields the profit/loss in the specific price scenario. Given 

the chosen confidence levels (model parameters), the Expected Shortfall of the margined portfolio 

can be computed.  

The Expected Shortfall can be undiversified or diversified depending on whether, in case of a 

portfolio composed of bonds issued by multiple countries, the benefit of the diversification 

between issuers undertaken by the Clearing Member is acknowledged or not. 
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2 Cash-flow mapping 

2.1 Coupon stream definition 

Preliminary to the cash-flow mapping procedure is the determination of the coupon stream 

of each of the securities belonging to the categories listed in the previous paragraph. 

Particular procedures must be applied to floating-rate securities (floaters - i.e. Italian CCTeu) 

and inflation-linked securities (linkers - i.e. Italian BTP Italia and BTP€i and Spanish linkers), 

as described in the following sub-paragraph. 

2.1.1 Floaters and linkers 

Input data needed 

In order to correctly deal with floaters and linkers (whether European or Italian inflation-

linked) the input data needed are: 

1) 6M Euribor zero-coupon spot curve at evaluation date; 

2) 6M Euribor time series; 

3) Zero-coupon spot European inflation curve at evaluation date; 

4) Zero-coupon spot Italian inflation curve at evaluation date; 

5) European ex-tobacco CPI (CPTFEMU) time series; 

6) Italian ex-tobacco CPI (FOI) time series. 

Building the 6M Euribor ZC forward curve at evaluation date for CCTeus 

CCTeus are Italian government bonds whose coupons are indexed to the 6M Euribor. In 

order to define the coupon stream it is therefore necessary to calculate the future value of 

the underlying rate at the various reset dates. The reset date is the day at which the 6M Euribor 

employed for defining a given coupon is set. The reset date for the current coupon is defined 

as the last coupon date - 2 working days.  

To this aim, the 6M Euribor ZC spot curve is essential, the forward rates being implied by the 

term structure.  

Given a generic term structure, the following relation indeed holds: 
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Figure 2-1: Spot and forward rates 

 

Assuming you want to invest €1 at 0 for 2 years there are two different options: 

1) directly invest for 2 years at spot rate S2; 

2) invest for 1 year at spot rate S1 and then reinvest the amount obtained for 1 year 

more at forward rate 1F1, i.e. the rate applied to financial operations that start in 1 year 

and end in 2 years. 

Absence of arbitrage condition implies that the two investment options described above 

must be equivalent: 

(1) (1+ S2)2 = (1+S1) * (1+1F1), 

which in turn implies: 

(2) 1F1  = (1+S2)2 / (1 + S1) - 1. 

Each specific spot curve therefore implies a corresponding forward curve. 

As far as CCTeus are concerned, in order to calculate the future coupon values, thus defining 

the coupon stream, it is necessary to start from the 6M Euribor ZC spot curve. 

Intermediate, unavailable tenors can be obtained linearly interpolating available ones (e.g. 

spot_rate_210 = spot_rate_180 + (spot_rate_270 - spot_rate_180 ) * (210 - 180) / (270 - 

180)). 

Having the ZC spot curve, it is possible to proceed with the calculation of the respective 

discount factors: 

Table 1: Discount factors calculation  
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Tenor Rate Discount factor 

1 spot_rate_1 
1 / (1 + spot_rate_1 * 1 / 

360) 

7 spot_rate_7 
1 / (1 + spot_rate_7 * 7 / 

360) 

… … … 

… … … 

2700 spot_rate_2700 
1 / (1 + spot_rate_2700 * 

2700 / 360) 
 

according to the formula df = 
1

(1 + r * T)
 , with r: annual spot rate and T: reference tenor of the spot 

rate, expressed in year fraction (day count convention: act/360). 

Given the calculated discount factors, it is possible to compute the 6M forward discount factors for 

each of the curve tenors according to the formula dfforward_t = 
dft+6M

dft
: 

Table 2: Forward discount factors calculation 

Tenor Rate Discount factor 
6M forward 

discount factor 

1 spot_rate_1 df_1 df_181 / df_1 

7 spot_rate_7 df_7 df_187 / df_7 

… … … … 

180 spot_rate_180 df_180 
df_360 / 
df_180 

… … … … 

2520 spot_rate_2520 df_2520 
df_2700 / 
df_2520 

 

For each of the calculated discount factors the respective 6M forward discount factor must be 

computed (with the obvious exception of the discount factor corresponding to the last tenor, as 

we will see below). In detail, for each of them, the respective 6M ahead discount factor must be 

identified: if the latter is not directly available among those already computed, it is necessary 

to compute it by linear interpolation. For example, the 6M forward discount factor for the O/N 

(i.e. 1d) rate will be equal to the ratio of the 181d discount factor (starting tenor = 1 day + 6 

months) to the 1d discount factor. While the latter is directly available, the former must be 

calculated as linear interpolation between the 180d discount factor and the 210d discount factor 

(df_180 + (df_210 - df_180) * (181 - 180) / (210 - 180)). The 6M forward discount factor for the 

7d rate will be equal to the ratio of the 187d discount factor (starting tenor = 7 days + 6 months) 

to the 7d discount factor. As in the previous case, the latter is directly available while the former 

must be calculated as linear interpolation between the discount factors within which it falls 

(again, 180 and 210 days). In order to compute the 180d discount factor no linear interpolation 

is instead needed, as the two terms of the ratio are both already available (180 and 360 days). 
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In the above representation, the calculation of the 6M forward discount factors ends up at tenor 

2520 (corresponding to 7 years), obtained as the ratio of the 2700d discount factor (7.5 years) to 

the 2520d discount factor (7 years). 

It is finally possible to proceed with the calculation of the 6M forward rates for each of the 

tenors for which the respective 6M forward discount factor has been computed, according to the 

formula forwardratet
=

1 - dfforwardt

dfforwardt * 
180

360

 : 

Table 3: Forward rates calculation 

Tenor Rate Discount factor 
6M forward 

discount factor 
6M forward 

rate 

1 spot_rate_1 df_1 fwd_df_1 
(1 – fwd_df_1) 
/ (fwd_df_1 * 

180/360) 

7 spot_rate_7 df_7 fwd_df_7 
(1 – fwd_df_7) 
/ (fwd_df_7 * 

180/360) 

… … … … … 

180 spot_rate_180 df_180 fwd_df_180 

(1 – 
fwd_df_180) / 
(fwd_df_180 * 

180/360) 

… … … … … 

2520 spot_rate_2520 df_2520 fwd_df_2520 

(1 – 
fwd_df_2520) 

/ 
(fwd_df_2520 

* 180/360) 
 

Once built the 6M forward curve at evaluation date, it is possible to proceed with the definition 

of the coupon stream of the CCTeus indexed to 6M Euribor. 

Coupon stream definition for CCTeus 

In order to define the coupon stream for CCTeus it is necessary to know, in addition to the 

forward values of the underlying rate, the fixed annual spread applied to them (CCTeus indeed 

semiannually pay 6M Euribor + spread). The sum of these annual rates and the annual spread 

component - multiplied by the number of days between contiguous coupon dates, i.e. 6 

months - defines the coupons. 

Consider the following example: 

• ISIN: IT0005104473; 

• Maturity date: 15/12/2019; 
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• Current coupon rate: 0,14; 

• Spread: 0,55%; 

• Coupon frequency: 6 months; 

• Principal: 100; 

• Evaluation date: 20/04/2018. 

Consider the following 6M Euribor forward curve at evaluation date: 

Tenor Days 6M Euribor forward rate 

O/N 1 -0,00324 

1W 7 -0,00318 

1M 30 -0,00293 

2M 60 -0,00267 

3M 90 -0,00238 

6M 180 -0,00258 

7M 210 -0,00243 

8M 240 -0,00229 

9M 270 -0,00236 

1YR 360 -0,00186 

1,5YR 540 0,00183 

2YR 720 0,00372 
 

The first step is the determination of the future coupon dates: 

Coupon date 

15/06/2018 

15/12/2018 

15/06/2019 

15/12/2019 
 

Subsequently, it is necessary to determine the reset date of each future coupon date (payment) 

and compute the relative time to payment, i.e. the number of days between evaluation date (in 

the example, 20/04/2018) and each reset date: 

Coupon date Reset date Time to payment (days) 

15/06/2018 13/12/2017 past 

15/12/2018 13/06/2018 54 

15/06/2019 13/12/2018 237 

15/12/2019 13/06/2019 419 
 

For each time to payment, as shown in the table below, the corresponding 6M Euribor forward 

rate is identified (linearly interpolated or directly available looking at the curve in case the time 

to payment coincides with one of its tenors). 
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Coupon date Reset date 
Time to payment 

(days) 
6M Euribor forward 

rate 

15/06/2018 13/12/2017 past unnecessary1 

15/12/2018 13/06/2018 54 -0,002722 

15/06/2019 13/12/2018 237 -0,002304 

15/12/2019 13/06/2019 419 0,0006505 
 

It is finally possible to proceed with the calculation of each coupon employing the following 

formula: 

(4) coupon = max(0;(forward_rate+spread) * principal * 
coupon_date-last_coupon_date

360
). 

The 15/12/2018 coupon payment will thus be: 

(-0,002722+0,0055) * 100 * 
15_12_2018-15_06_2018

360
 = 0,14; 

and so on for the other coupon dates (rounding: 2 decimal places). 

At maturity, the payment will be equal to what obtained employing formula (4) plus the 

repayment of the principal of the bond. The coupon stream of the CCTeu of the example 

can therefore be summarized as in the following table: 

Coupon date Coupon Notes 

15/06/2018 0,14 known, coupon 

15/12/2018 0,14 coupon 

15/06/2019 0,16 coupon 

15/12/2019 100,31 
coupon + 
principal 

 

Building the CPI curves for linkers  

In order to define the coupon stream for linkers, it is necessary to leverage on the relevant 

ZC spot inflation curves to lengthen the time series of the relevant CPIs with their forward 

values. 

First, we need to differentiate between the three types of linkers which may be subject to 

margining: 

• BTP Italia – Italian government bonds linked to Italian ex-tobacco inflation (FOI); 

• BTP€i – Italian government bonds linked to European ex-tobacco inflation (CPTFEMU); 

• Spanish government bonds linked to European ex-tobacco inflation (CPTFEMU). 

 
1 The 15/06/2018 coupon is already defined and known. 
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Depending on the type of security subject to margining, it is therefore necessary to proceed 

with the calculation of different forward CPI values (FOI or CPTFEMU), depending on 

whether the security is indexed to Italian or European ex-tobacco inflation. The first step is, as 

anticipated, the retrieval of the relevant ZC spot inflation curve. 

Before proceeding with the calculation of the forward CPI values it is also necessary to retrieve 

the CPI time series. Both CPIs are updated on a monthly basis (usually at mid-month) and 

with a time lag of 1 month (e.g. at mid-April the March CPI value is published). The 

aforementioned time series will thus have monthly observations and can be represented as 

follows: 

Table 4: FOI time series 

Date FOI CPI 

31-03-2018 FOI_cpi_0318 

28-02-2018 FOI_cpi_0218 

31-01-2018 FOI_cpi_0118 

31-12-2017 FOI_cpi_1217 

… … 
 

Table 5: CPTFEMU time series 

Date CPTFEMU CPI 

31-03-2018 CPTFEMU_cpi_0318 

28-02-2018 CPTFEMU_cpi_0218 

31-01-2018 CPTFEMU_cpi_0118 

31-12-2017 CPTFEMU_cpi_1217 

… … 
 

Once the time series are available, it is necessary to identify the base value which will be 

employed in the calculation of the forward CPI values. The base value is the 3 months-earlier 

CPI value (3 months-time lag) at evaluation date (e.g. if the evaluation date is 04/05/2018 

the base value will be the 28/02/2018 (February) CPI value). 

The forward CPI values can then be calculated as follows: 

Table 6: Forward CPI - FOI 

Tenor (years) ZC spot inflation rate Forward CPI 

1 FOI_ZC_1yr_rate 
(1 + FOI_ZC_1yr_rate) ^ 1 

* base value 

2 FOI_ZC_2yr_rate 
(1 + FOI_ZC_2yr_rate) ^ 2 

* base value 

3 FOI_ZC_3yr_rate 
(1 + FOI_ZC_3yr_rate) ^ 3 

* base value 

4 FOI_ZC_4yr_rate (1 + FOI_ZC_4yr_rate) ^ 4 
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* base value 

5 FOI_ZC_5yr_rate 
(1 + FOI_ZC_5yr_rate) ^ 5 

* base value 

6 FOI_ZC_6yr_rate 
(1 + FOI_ZC_6yr_rate) ^ 6 

* base value 

7 FOI_ZC_7yr_rate 
(1 + FOI_ZC_7yr_rate) ^ 7 

* base value 

8 FOI_ZC_8yr_rate 
(1 + FOI_ZC_8yr_rate) ^ 8 

* base value 

9 FOI_ZC_9yr_rate 
(1 + FOI_ZC_9yr_rate) ^ 9 

* base value 

10 FOI_ZC_10yr_rate 
(1 + FOI_ZC_10yr_rate) ^ 

10 * base value 

12 FOI_ZC_12yr_rate 
(1 + FOI_ZC_12yr_rate) ^ 

12 * base value 

15 FOI_ZC_15yr_rate 
(1 + FOI_ZC_15yr_rate) ^ 

15 * base value 

20 FOI_ZC_20yr_rate 
(1 + FOI_ZC_20yr_rate) ^ 

20 * base value 

25 FOI_ZC_25yr_rate 
(1 + FOI_ZC_25yr_rate) ^ 

25* base value 

30 FOI_ZC_30yr_rate 
(1 + FOI_ZC_30yr_rate) ^ 

30 * base value 
 

Table 7: Forward CPI - CPTFEMU 

Tenor (years) ZC spot inflation rate Forward CPI 

1 CPTFEMU_ZC_1yr_rate 
(1 + CPTFEMU 

_ZC_1yr_rate) ^ 1 * base 
value 

2 CPTFEMU _ZC_2yr_rate 
(1 + CPTFEMU 

_ZC_2yr_rate) ^ 2 * base 
value 

3 CPTFEMU _ZC_3yr_rate 
(1 + CPTFEMU 

_ZC_3yr_rate) ^ 3 * base 
value 

4 CPTFEMU _ZC_4yr_rate 
(1 + CPTFEMU 

_ZC_4yr_rate) ^ 4 * base 
value 

5 CPTFEMU _ZC_5yr_rate 
(1 + CPTFEMU 

_ZC_5yr_rate) ^ 5 * base 
value 

6 CPTFEMU _ZC_6yr_rate 
(1 + CPTFEMU 

_ZC_6yr_rate) ^ 6 * base 
value 

7 CPTFEMU _ZC_7yr_rate 
(1 + CPTFEMU 

_ZC_7yr_rate) ^ 7 * base 
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value 

8 CPTFEMU _ZC_8yr_rate 
(1 + CPTFEMU 

_ZC_8yr_rate) ^ 8 * base 
value 

9 CPTFEMU _ZC_9yr_rate 
(1 + CPTFEMU 

_ZC_9yr_rate) ^ 9 * base 
value 

10 CPTFEMU _ZC_10yr_rate 
(1 + CPTFEMU 

_ZC_10yr_rate) ^ 10 * base 
value 

12 CPTFEMU _ZC_12yr_rate 
(1 + CPTFEMU 

_ZC_12yr_rate) ^ 12 * base 
value 

15 CPTFEMU _ZC_15yr_rate 
(1 + CPTFEMU 

_ZC_15yr_rate) ^ 15 * base 
value 

20 CPTFEMU _ZC_20yr_rate 
(1 + CPTFEMU 

_ZC_20yr_rate) ^ 20 * base 
value 

25 CPTFEMU _ZC_25yr_rate 
(1 + CPTFEMU 

_ZC_25yr_rate) ^ 25* base 
value 

30 CPTFEMU _ZC_30yr_rate 
(1 + CPTFEMU 

_ZC_30yr_rate) ^ 30 * base 
value 

 

It is then possible to lengthen the observed CPI time series with the computed forward CPI 

values to have a complete (observed and forward) time series of CPI values, through which it 

is possible to define the coupon stream for the linkers. The two complete time series can be 

represented as follows (assuming as base value that of March 2018): 

Table 8: FOI complete time series 

Date FOI CPI 

31-03-2048 forward_FOI_cpi_30yr 

… … 

31-03-2027 forward_FOI_cpi_9yr 

31-03-2026 forward_FOI_cpi_8yr 

31-03-2025 forward_FOI_cpi_7yr 

31-03-2024 forward_FOI_cpi_6yr 

31-03-2023 forward_FOI_cpi_5yr 

31-03-2022 forward_FOI_cpi_4yr 

31-03-2021 forward_FOI_cpi_3yr 

31-03-2020 forward_FOI_cpi_2yr 

31-03-2019 forward_FOI_cpi_1Yr 

31-03-2018 FOI_cpi_0318 
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28-02-2018 FOI_cpi_0218 

31-01-2018 FOI_cpi_0118 

31-12-2017 FOI_cpi_1217 

… … 

… … 
 

Table 9: CPTFEMU complete time series 

Date CPTFEMU CPI 

31-03-2048 forward_CPTFEMU_cpi_30yr 

… … 

31-03-2027 forward_CPTFEMU_cpi_9yr 

31-03-2026 forward_CPTFEMU_cpi_8yr 

31-03-2025 forward_CPTFEMU_cpi_7yr 

31-03-2024 forward_CPTFEMU_cpi_6yr 

31-03-2023 forward_CPTFEMU_cpi_5yr 

31-03-2022 forward_CPTFEMU_cpi_4yr 

31-03-2021 forward_CPTFEMU_cpi_3yr 

31-03-2020 forward_CPTFEMU_cpi_2yr 

31-03-2019 forward_CPTFEMU_cpi_1Yr 

31-03-2018 CPTFEMU_cpi_0318 

28-02-2018 CPTFEMU_cpi_0218 

31-01-2018 CPTFEMU_cpi_0118 

31-12-2017 CPTFEMU_cpi_1217 

… … 

 

Coupon stream definition for linkers 

Both coupons and principal of linkers are revalued on the basis of an indexation coefficient, 

which in turn is a function of the trend of the reference CPI over time. 

In order to define the coupon stream, the following information are therefore essential: 

• issue date; 

• maturity date; 

• real annual coupon rate; 

• coupon frequency; 

• principal; 

• complete time series of the reference CPI (FOI or CPTFEMU). 

For example, consider the following BTP€i at evaluation date: 20/04/2018: 

• issue date: 23/04/2014; 

• maturity date: 23/04/2020; 
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• real annual coupon rate: 0,825%; 

• coupon frequency: 6 months; 

• principal: 100; 

and the following complete time series of the reference CPTFEMU CPI, obtained as 

described above: 
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Date Mid Price

31/03/2048 172,13

31/03/2043 156,61

31/03/2038 141,95

31/03/2033 128,12

31/03/2030 121,10

31/03/2028 116,84

31/03/2027 114,80

31/03/2026 112,92

31/03/2025 111,10

31/03/2024 109,36

31/03/2023 107,72

31/03/2022 106,28

31/03/2021 104,98

31/03/2020 103,77

31/03/2019 102,54

31/03/2018 101,70

28/02/2018 101,50

31/01/2018 101,50

31/12/2017 101,10

30/11/2017 100,80

31/10/2017 100,90

30/09/2017 101,10

31/08/2017 101,40

31/07/2017 101,00

30/06/2017 101,00

31/05/2017 101,10

30/04/2017 101,30

31/03/2017 101,00

28/02/2017 101,00

31/01/2017 100,60

31/12/2016 100,30

30/11/2016 100,00

31/10/2016 100,00

30/09/2016 100,00

31/08/2016 100,20

31/07/2016 100,00

30/06/2016 99,90

31/05/2016 99,70

30/04/2016 99,60

31/03/2016 99,60

29/02/2016 99,50

31/01/2016 99,70

31/12/2015 99,91

30/11/2015 99,91

31/10/2015 100,09

30/09/2015 99,91

31/08/2015 100,28

31/07/2015 100,09

30/06/2015 100,19

31/05/2015 100,09

30/04/2015 100,00

31/03/2015 99,91

28/02/2015 99,72

31/01/2015 99,44

31/12/2014 99,91

30/11/2014 99,91

31/10/2014 100,09

30/09/2014 100,00

31/08/2014 100,37

31/07/2014 100,19

30/06/2014 100,28

31/05/2014 100,19

30/04/2014 100,28

31/03/2014 100,09

28/02/2014 100,09

31/01/2014 100,19

31/12/2013 100,00

CPTFEMU
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The first step in the definition of the coupon stream for linkers is to list the coupon dates 

(starting from issue date, including also past coupon dates): 

Coupon date 

23/04/2014 

23/10/2014 

23/04/2015 

23/10/2015 

23/04/2016 

23/10/2016 

23/04/2017 

23/10/2017 

23/04/2018 

23/10/2018 

23/04/2019 

23/10/2019 

23/04/2020 
 

It is then necessary for each of the above dates to identify the relative 2 months-earlier and 3 

months-earlier dates, transformed into month-ends: 

Coupon date Coupon date – 2 months Coupon date – 3 months 

23/04/2014 28/02/2014 31/01/2014 

23/10/2014 31/08/2014 31/07/2014 

23/04/2015 28/02/2015 31/01/2015 

23/10/2015 31/08/2015 31/07/2015 

23/04/2016 29/02/2016 31/01/2016 

23/10/2016 31/08/2016 31/07/2016 

23/04/2017 28/02/2017 31/01/2017 

23/10/2017 31/08/2017 31/07/2017 

23/04/2018 28/02/2018 31/01/2018 

23/10/2018 31/08/2018 31/07/2018 

23/04/2019 28/02/2019 31/01/2019 

23/10/2019 31/08/2019 31/07/2019 

23/04/2020 29/02/2020 31/01/2020 

 

For each of the dates identified in the last two columns of the above table, the respective 

reference CPI value must be obtained from its complete time series, linearly interpolating 

where necessary: 

Coupon date 
Coupon date – 2 

months 
Coupon date – 3 

months 
CPI m-2 CPI m-3 

23/04/2014 28/02/2014 31/01/2014 100,0934 100,1867 

23/10/2014 31/08/2014 31/07/2014 100,3735 100,1867 

23/04/2015 28/02/2015 31/01/2015 99,7199 99,4398 
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23/10/2015 31/08/2015 31/07/2015 100,2801 100,0934 

23/04/2016 29/02/2016 31/01/2016 99,5000 99,7000 

23/10/2016 31/08/2016 31/07/2016 100,2000 100,0000 

23/04/2017 28/02/2017 31/01/2017 101,0000 100,6000 

23/10/2017 31/08/2017 31/07/2017 101,4000 101,0000 

23/04/2018 28/02/2018 31/01/2018 101,5000 101,5000 

23/10/2018 31/08/2018 31/07/2018 102,0512 101,9800 

23/04/2019 28/02/2019 31/01/2019 102,4667 102,4024 

23/10/2019 31/08/2019 31/07/2019 103,0520 102,9478 

23/04/2020 29/02/2020 31/01/2020 103,6637 103,5662 

 

For each of the rows of the above table an index number is computed according to the 

following formula: 

(5) index_number = CPIm-3 + 
d-1

dd
 * (CPIm-2 - CPIm-3), 

with d: coupon date for which the index number is computed and dd: number of days in the 

month which the coupon date belongs to (rounding: 5 decimal places): 

Coupon 
date 

Coupon date 
– 2 months 

Coupon 
date – 3 
months 

CPI m-2 CPI m-3 
Index 

number 

23/04/2014 28/02/2014 31/01/2014 100,0934 100,1867 100,1183 

23/10/2014 31/08/2014 31/07/2014 100,3735 100,1867 100,3193 

23/04/2015 28/02/2015 31/01/2015 99,7199 99,4398 99,6452 

23/10/2015 31/08/2015 31/07/2015 100,2801 100,0934 100,2259 

23/04/2016 29/02/2016 31/01/2016 99,5000 99,7000 99,5533 

23/10/2016 31/08/2016 31/07/2016 100,2000 100,0000 100,1419 

23/04/2017 28/02/2017 31/01/2017 101,0000 100,6000 100,8933 

23/10/2017 31/08/2017 31/07/2017 101,4000 101,0000 101,2839 

23/04/2018 28/02/2018 31/01/2018 101,5000 101,5000 101,5000 

23/10/2018 31/08/2018 31/07/2018 102,0512 101,9800 102,0305 

23/04/2019 28/02/2019 31/01/2019 102,4667 102,4024 102,4495 

23/10/2019 31/08/2019 31/07/2019 103,0520 102,9478 103,0218 

23/04/2020 29/02/2020 31/01/2020 103,6637 103,5662 103,6377 
 

Once an index number for each coupon date has been computed it is possible to calculate the 

relative indexation coefficient (IC), bearing in mind that the IC at issue date is equal to 1 and that 

the following ICs are equal to: 

ICt = 
index_numbert

max(index_number
t-1; …; index_number0)

 for BTP Italia,  

that is the ratio of the index number relative to the coupon date for which the IC is computed 

and the maximum among the previous index numbers (rounding: 5 decimal places), and  
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ICt = 
index_numbert

index_number0

 for other linkers, 

that is the ratio of the index number relative to the coupon date for which the IC is computed 

and the issue date index numbers (rounding: 5 decimal places).  

In the example below an example of computation of ICs for a BTP Italia is shown: 

Coupon 
date 

Index 
number 

IC 

23/04/2014 100,1183 1,0000 

23/10/2014 100,3193 1,0020 

23/04/2015 99,6452 0,9933 

23/10/2015 100,2259 0,9991 

23/04/2016 99,5533 0,9924 

23/10/2016 100,1419 0,9982 

23/04/2017 100,8933 1,0057 

23/10/2017 101,2839 1,0039 

23/04/2018 101,5000 1,0021 

23/10/2018 102,0305 1,0052 

23/04/2019 102,4495 1,0041 

23/10/2019 103,0218 1,0056 

23/04/2020 103,6377 1,0060 
 

Since BTP Italias guarantee real coupons, in case of deflation (IC < 1) a floor equal to 1 is 

applied to the ICs. The adjusted ICs can therefore be defined as max (IC; 1): 

Coupon 
date 

Index 
number 

IC Adjusted IC 

23/04/2014 100,1183 1,0000 1,0000 

23/10/2014 100,3193 1,0020 1,0020 

23/04/2015 99,6452 0,9933 1,0000 

23/10/2015 100,2259 0,9991 1,0000 

23/04/2016 99,5533 0,9924 1,0000 

23/10/2016 100,1419 0,9982 1,0000 

23/04/2017 100,8933 1,0057 1,0057 

23/10/2017 101,2839 1,0039 1,0039 

23/04/2018 101,5000 1,0021 1,0021 

23/10/2018 102,0305 1,0052 1,0052 

23/04/2019 102,4495 1,0041 1,0041 

23/10/2019 103,0218 1,0056 1,0056 

23/04/2020 103,6377 1,0060 1,0060 
 

In case of other linkers it is only the last IC to be floored at 1. 

It is then possible to compute each coupon the following way: 
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coupon
t
 = 

real_annual_coupon_rate

coupon_frequency
 * principal * ICadjusted_t : 

Coupon 
date 

Index 
number 

IC Adjusted IC Coupon 

23/04/2014 100,1183 1,0000 1,0000 -2 

23/10/2014 100,3193 1,0020 1,0020 0,4133 

23/04/2015 99,6452 0,9933 1,0000 0,4125 

23/10/2015 100,2259 0,9991 1,0000 0,4125 

23/04/2016 99,5533 0,9924 1,0000 0,4125 

23/10/2016 100,1419 0,9982 1,0000 0,4125 

23/04/2017 100,8933 1,0057 1,0057 0,4149 

23/10/2017 101,2839 1,0039 1,0039 0,4141 

23/04/2018 101,5000 1,0021 1,0021 0,4134 

23/10/2018 102,0305 1,0052 1,0052 0,4147 

23/04/2019 102,4495 1,0041 1,0041 0,4142 

23/10/2019 103,0218 1,0056 1,0056 0,4148 

23/04/2020 103,6377 1,0060 1,0060 0,4150 
 

The revaluation of the principal amount is again differently treated: 

BTP Italia: 

The principal revaluation must be computed for each coupon date the following way: 

 principal_revaluation
t
 = principal * max(ICt  - 1; 0). 

At maturity the principal reimbursement must be added to the final total payment. 

Other linkers: 

The revaluation of the principal amount is paid only at maturity. Therefore, before maturity 

the principal revaluation will be:  

principal_revaluation
t<>T

 = 0 , 

while at maturity the principal revaluation will depend on the ratio between the last (i.e. at 

maturity date) and the first (i.e. at issue date) index numbers: 

principal_revaluation
t=T

 = principal * max(
index_numberT

index_number0

; 1). 

The principal revaluation computed this way must be added to the previously computed 

coupon to get the final payment (rounding: 2 decimal places).  

The example below again refers to a BTP Italia: 

 
2 Issue date 
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Coupon 
date 

IC Adjusted IC Coupon 
Principal 

revaluation 
Payment 

23/04/2014 1,0000 1,0000 - - - 

23/10/2014 1,0020 1,0020 0,4133 0,2008 0,61 

23/04/2015 0,9933 1,0000 0,4125 0,0000 0,41 

23/10/2015 0,9991 1,0000 0,4125 0,0000 0,41 

23/04/2016 0,9924 1,0000 0,4125 0,0000 0,41 

23/10/2016 0,9982 1,0000 0,4125 0,0000 0,41 

23/04/2017 1,0057 1,0057 0,4149 0,5722 0,99 

23/10/2017 1,0039 1,0039 0,4141 0,3871 0,80 

23/04/2018 1,0021 1,0021 0,4134 0,2134 0,63 

23/10/2018 1,0052 1,0052 0,4147 0,5227 0,94 

23/04/2019 1,0041 1,0041 0,4142 0,4107 0,82 

23/10/2019 1,0056 1,0056 0,4148 0,5586 0,97 

23/04/2020 1,0060 1,0060 0,4150 0,5978 101,01 
 

Once the complete stream of payments has been computed, obviously only future payments 

are considered for cash-flow mapping purposes. The final table of future payments will thus be 

as follows (evaluation date: 20/04/2018): 

Coupon 
date 

IC Adjusted IC Coupon 
Principal 

revaluation 
Payment 

23/04/2018 1,0021 1,0021 0,4134 0,2134 0,63 

23/10/2018 1,0052 1,0052 0,4147 0,5227 0,94 

23/04/2019 1,0041 1,0041 0,4142 0,4107 0,82 

23/10/2019 1,0056 1,0056 0,4148 0,5586 0,97 

23/04/2020 1,0060 1,0060 0,4150 0,5978 101,01 
 

2.1.2 Bullet bonds 

Bullet bonds (bullets) are the simplest category among those described in this paragraph: it is 

indeed sufficient to define the sequence of the future coupon dates and compute each 

coupon as: 

(7) coupon
t
 = principal_amount * 

annual_coupon_rate

coupon_frequency
. 

For example, a bullet with a principal amount of 100 is assumed to pay semiannually a 5% 

annual rate every 30th of September and 31st of March until maturity (30th September 2020). 

If the evaluation date is 20/04/2018: 

Date Payment 

30/09/2018 2,5 

31/03/2019 2,5 

30/09/2019 2,5 

31/03/2020 2,5 

30/09/2020 102,5 
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A particular sub-type of bullets are zero-coupon bonds (ZCs), with 0% coupon rate. 

2.2 Cash-flow mapping 

Once the coupon stream for each of the securities in the portfolio subject to margining has 

been defined, cash flows can be mapped to their respective risk factors. 

Since cash flows can be potentially infinite, a mapping system is used that allows to reduce 

their number and map them to a finite and relatively small set of ZC curve tenors called 

"vertices".  

For example, assuming to have a single bond with a single cash flow in exactly 8 years and 

that 8 years is not a managed vertex of the reference ZC curve, this cash flow will be split into 

a pair of cash flows at year 7 and 9, if managed. 

 

The two cash flows that originate from the original cash flow must be split in a way the 

current market value and the sign of the original cash flow are preserved. 

This kind of mapping procedure, called cash flow mapping, allows to take into account the risk 

associated to each future cash flow generated by a bond, discounted at the appropriate rate, 

and also the non-perfect correlation between tenors (corresponding rates) of a ZC curve (as 

opposed to duration mapping or principal mapping). 

In order to make the model manageable, cash flows, actually distributed along a continuum 

of maturities, are mapped to n tenors of the reference ZC curve. Employed ZC curves are 

Italian nominal, Italian real, Spanish nominal, Spanish real, Irish nominal and Portuguese 

nominal. 

Cash flows with a maturity that does not coincide with one of the n maturities of the 

reference ZC curve are split on the two contiguous maturities, the one preceding and the one 

following the maturity of the cash flow, respecting the following three conditions: 
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• The market value must be preserved: The market value of the two originated cash 

flows must be equal to the market value of the original cash flow. 

• The market risk must be preserved: The market risk of the two originated cash 

flows must be equal to the market risk of the original cash flow. 

• The sign must be preserved: The two originated cash flows must both have the 

same sign as the original cash flow. 

In order to apply the cash flow mapping procedure it is necessary to: 

1) compute the time to payment (TTP) of each cash flow of each bond; 

2) compute the yield to maturity of the bond which the particular cash flows belong to 

and then compute the market value of these cash flows; 

3) analyze the ZC curve on which each bond is mapped in terms of volatility of each 

tenor and correlation among tenors; 

4) calculate the weights used to map each cash flow (market value) on the contiguous 

vertices of the reference ZC curve; 

5) map each cash flow (market value) on the abovementioned vertices. 

2.2.1 Time to payment definition 

As previously mentioned, each security in the portfolio subject to margining is split into its 

future cash flows. For each of these cash flows it is necessary to identify the relative time to 

payment, as follows (act/act day count convention): 

(8) TTP = 
n days in period 365

365
+  

n days in period 366

366
. 

Formula (8) allows to take into account leap years, in case cash flows fall within them. In 

particular, the accrual periods within non-leap years and within leap years are identified for 

each cash flow: 

Figure 2-2: TTP definition 

 

Figure 2-2 exemplifies a situation in which the time interval between 'evaluation date' and  

'year 2' (start) constitutes the first term of (8), while the time interval between 'year 2' (start) 

and 'next coupon date' constitutes the second term of (8), with n days in period 365 (366): 

evaluation date next coupon date

year 2 (leap year)year 1 (non leap 

year)
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actual number of days between the two dates. If a cash flow accrues entirely in a non-

leap/leap year the second/first term of (8) is set to 0. 

Consider the following example: 

Evaluation date: 20/04/2018; 

Coupon date: 15/05/2020. 

In this case the time to payment will be: 

TTP = 
(31/12/2018 - 20/04/2018)

365
+1+ 

(15/05/2020 - 31/12/2019)

366
. 

It is then necessary to identify the issuer of each security in the portfolio subject to 

margining, in order to define on what ZC curve the security itself (its cash flows) will be 

mapped. We have to bear in mind that countries issuing both nominal and inflation-linked 

bonds will have two distinct curves.  

For each security it is therefore necessary to build a table of the following type: 

Table 10: Portfolio cash flow structure 

Portfolio ISIN Issuer TTP Cash flow 

X IT000XXXXXXX IT TTP_1_bond_1 Cashflow_1_bond_1 

X IT000XXXXXXX IT TTP_2_bond_1 Cashflow_2_bond_1 

X ES00000XXXXX ES TTP_1_bond_2 Cashflow_1_bond_2 

… … … … … 
 

Each cash flow must therefore be assigned to the proper ZC curve, in order to map its 

amount on the respective contiguous vertices. 

2.2.2 Yield to maturity and market value calculation 

To each cash flow must be assigned the yield to maturity of the bond which it belongs to. The 

calculation of the yield to maturity of a bond is fundamental as it represents the discount factor 

which allows to compute the market value of each of its cash flows (market value which in turn 

will be mapped on the ZC curve). 

In order to perform this calculation it is necessary to use a fitting algorithm (e.g. Newton) 

which, fed by the data, allows to obtain the yield to maturity of all the securities in the portfolio 

subject to margining. In particular, given the dirty market price of a security and the schedule 

of its cash flows, the relative yield to maturity can be computed according to the formula 

below: 

(9) bond_price= ( ∑ (

coupon

coupon_frequency

(1+YTM*)i
))T-1

i=1 +

coupon

coupon_frequency
 + princpal

(1+YTM*)T
  , 
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with i: time to payment of the given coupon and T: time to payment of the cash flow at maturity. 

Given the guess value YTM*, the chosen fitting algorithm will run until the difference 

between the theoretical dirty price (re)calculated according to the above formula and the dirty 

market price of the bond is below a predefined tolerance threshold. 

Table 10 can then be integrated as follows: 

Table 11: Portfolio cash flow structure and yield to maturity 

Portfolio ISIN Issuer TTP Cash flow 
Yield to 
maturity 

X IT000XXXXXXX IT TTP_1_bond_1 Cashflow_1_bond_1 Ytm_bond_1 

X IT000XXXXXXX IT TTP_2_bond_1 Cashflow_2_bond_1 Ytm_bond_1 

X ES00000XXXXX ES TTP_1_bond_2 Cashflow_1_bond_2 Ytm_bond_2 

… … … … … … 
 

For each cash flow the relative market value must then be calculated by discounting the cash 

flow by the yield to maturity of the security it belongs to: 

Table 12: Portfolio cash flow market value  

TTP Cash flow 
Yield to 
maturity 

Market value 

TTP_1_bond_1 Cashflow_1_bond_1 Ytm_bond_1 Cashflow_1_bond_1 / (1 + Ytm_bond_1) ^ TTP_1_bond_1 * ps 

TTP_2_bond_1 Cashflow_2_bond_1 Ytm_bond_1 Cashflow_2_bond_1 / (1 + Ytm_bond_1) ^ TTP_2_bond_1 * ps 

TTP_1_bond_2 Cashflow_1_bond_2 Ytm_bond_2 Cashflow_1_bond_2 / (1 + Ytm_bond_2) ^ TTP_1_bond_2 * ps 

… … … … 
 

with ps: position sign (i.e. +1 for long ISINs and -1 for short ISINs). 

The sum of the market values of all the cash flows belonging to a given security has to be 

equal to the market value of the security itself. 

2.2.3 Sovereign zero-coupon spot curve analysis 

The time series of all the tenors (rates) of all the ZC curves must have length at least equal to 

the lookback period model parameter + 1: 

Table 13: ZC curve tenors time series 

Date 3M … 30Y 

t - n w_t-n % … z_t-n % 

t - n + 1 w_t-n+1 % … z_t-n+1 % 

… … … … 

t w_t % … z_t % 
 

In case of ‘all available data’ lookback period the time series will obviously be sufficient. 

It is necessary to compute the following quantities: 

1) volatility (σ) of each tenor of each ZC curve; 

2) correlation (ρ) of each pair of contiguous tenors of each ZC curve. 
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In order to compute the volatility (σ) it is necessary to transform the rate time series into time 

series of daily rate absolute variations: 

Table 14: ZC curve time series – daily variations 

Date 3M … 30Y 

t - n    

t - n + 1 (w_t-n+1 - w_t-n) % … (z_t-n+1 - z_t-n) % 

… … … … 

t (w_t - w_t-1)  % … (z_t - z_t-1)  % 
 

It is then possible to compute the (sample) volatility (σ) of each tenor according to formula: 

(10) σ =  √∑
(xi-  xavg)

2

n-1
n
i=1  , 

with xavg: average of the observations whose volatility is being computed (daily rate absolute 

variations). 

Correlation (ρ) must be computed for all the pairs of contiguous tenors (of each ZC curve), 

with the exception of the last tenor, since there is no corresponding upper tenor. 

For example, consider a ZC curve with the following structure: 

 

3M 6M 1Y 2Y 3Y 4Y 
 

Correlation (ρ) must be computed for the pairs of tenors 3M/6M, 6M/1Y, 1Y/2Y, 2Y/3Y 

and 3Y/4Y. The computation of ρ must be performed according to the following formula: 

(11) ρ =( ∑ (xi-xavg)(y
i
-y

avg
)/(n-1))/√∑

(xi - xavg)
2

n-1

n
i=1 ∑

(y
i 
- y

avg
)

2

n-1

n
i=1

n
i=1  , 

with x and y: down and up tenors, respectively. 

For example, consider the following time series of daily rate absolute variations for the 3-

month and 6-month tenors of a specific ZC curve: 

Date 3M 6M 

12/04/2018 0,725% 0,725% 

13/04/2018 0,543% 0,543% 

16/04/2018 0,543% 0,283% 

17/04/2018 0,972% 0,972% 

18/04/2018 0,445% 0,445% 

19/04/2018 0,445% 0,445% 

20/04/2018 1,656% 1,656% 
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The lookback period in the example is equal to 7. xavg and  y
avg

 are equal to 0,761% e 0,724%, 

respectively. According to formulas (10) and (11), the 3 month- and 6 month-tenor volatilities 

are equal to 0,436% and 0,468%, respectively. Their correlation is instead equal to 97,88%. 

2.2.4 Weight calculation for cash-flow mapping  

Once the TTP and the market value of each cash flow of each bond in the portfolio subject to 

margining have been computed, it is then possible to map each of these cash flows (their 

market values) on the tenors of the reference ZC curves (i.e. the curve of the country issuing the 

bond). 

For example, consider the following margining portfolio: 

Portfolio ISIN Issuer TTP Cash flow market value 

X IT000XXXXXX1 IT 0,3 100.000 

X IT000XXXXXX2 IT 1,2 150.000 
 

and Italian ZC curve structure: 

3M 6M 1Y 2Y 
 

Expressing the TTP in year fractions, the first cash flow (TTP: 0,3) has to be mapped 

between onto the 3 month- (0,25) and 6 month- (0,5) tenors. The second cash flow has 

instead to be mapped onto the 1 year- (1) and 2 year- (2) tenors:3 

ISIN Issuer TTP Market value Down tenor Up tenor 

IT000XXXXXX1 IT 0,3 100.000 0,25 0,5 

IT000XXXXXX2 IT 1,2 150.000 1 2 
 

Once the relevant tenors of the reference ZC curve have been identified, the down and up 

weights of each cash flow must be computed: these weights allow to map a certain fraction 

of the cash flow on the pair of relevant tenors within which the cash flow falls, in 

compliance with the principles outlined at the beginning of this paragraph. 

It is therefore necessary to compute the interpolation coefficients φ
down

 and  φ
up

  for each of the 

cash flows to map: these are function of the TTP of the cash flow and of the duration of the 

down and up tenors: 

(12)  φ
up

 = 
TTP - down_tenor

up_tenor -  down_tenor
; 

(13)  φ
down

 = (1 - φ
up

) , 

 
3 In case a cash flow has a TTP lower (higher) than the shortest (longest) tenor, it has to be entirely mapped on 
the latter. 
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thus obtaining: 

TTP Market value Down tenor Up tenor  φ
low

  φ
up

 

0,3 100.000 0,25 0,5 0,8 0,2 

1,2 150.000 1 2 0,8 0,2 

 

The volatilities of the down (σn) and up (σn+1) tenors of a cash flow, computed according to 

formula (10), are then multiplied by the respective interpolation coefficients (the volatility of the 

down tenor must be multiplied by the interpolation coefficient assigned to the down tenor φ
down

, 

the volatility of the up tenor by the interpolation coefficient of the up tenor φ
up

), this way obtaining 

σ*n and σ*n+1, i.e. the volatilities of the down and up tenors of the cash flow adjusted by the 

respective interpolation coefficient. 

By employing σ* instead of σ it is possible to prevent the distortions that would arise in case 

the volatilities of two contiguous tenors were not regularly one greater than the other (with 

consequent abrupt fluctuations in the weights applied to the cash flows involved and hence 

fluctuations in the margin requirements not justified by changes in the riskiness of the 

portfolio itself). 

The use of σ* in the mapping procedure also allows to map the cash flows consistently with 

their positioning within the interval represented by the two contiguous vertices. 

Let’s indicate with Wn and Wn+1 the weights of the down and up tenors, respectively, with 

σ*n and σ*n+1 their adjusted volatilities and with ρ
n,n+1

 their correlation, according to formula 

(11). 

Since the sum of the two weights must be equal to 1 (in order to respect the principle 

according to which the market value of the original cash flow to be mapped must be 

preserved), we have that: 

Wn+1 = 1-Wn . 

Furthermore, 

σ*int = √Wn
2σ*n

2+Wn+1
2 σ*n+1

2 +2WnWn+1σ*n σ*n+1ρn,n+1
 . 

We can therefore compute 

(14) Wn= 
-(2σ*n σ*n+1ρn,n+1

 - 2σ*n+1
2 ) ± √(2σ*n σ*n+1ρn,n+1

 - 2σ*n+1
2 )

2

-4(σ*n
2+σ*n+1

2 -2σ*n σ*n+1ρn,n+1
)(σ*n+1

2 - σ*int
2 )

2(σ*n
2+σ*n+1

2 -2σ*n σ*n+1ρn,n+1
)

, 

with σ*int=  φ
down

 σ*n+ φ
up

 σ*n + 1 . 
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The fundamental theorem of algebra implies that formula (14) yields two solutions: in order 

to respect the principle according to which the sign of the original cash flow to be mapped 

must be preserved, it is necessary to choose the value of Wnwhich is between 0 and 1. 

Based on the above, each cash flow can then be mapped on the down and up tenors, after 

having multiplied its market value by the respective weights: 

TTP Market vale Wn Wn+1 Cash flow down Cash flow up 

TTP_1 Marketvalue_cashflow_1 w x 
Marketvalue_cashflow_1 

* w 
Marketvalue_cashflow_1 

* x 

TTP_2 Marketvalue_cashflow_2 y z 
Marketvalue_cashflow_2 

* y 
Marketvalue_cashflow_2 

* z 
 

To summarize, for each ISIN in the portfolio subject to margining the structure of its future 

cash flows is defined. The relative market value is then computed (with positive or negative 

sign depending on the nature of the position) and mapped on the contiguous tenors of the 

reference ZC curve, according to the value of the statistical quantities characterizing the curve 

tenors themselves and to the TTP of the cash flow. 

2.2.5 Market value mapping on sovereign zero-coupon spot curve tenors 

For each ISIN in the portfolio subject to margining it is then possible to obtain, by adding 

up all the market values mapped on a specific ZC curve tenor, a structure like that represented 

below: 

Table 15: Cash-flow mapping per ISIN 

Portfolio ISIN Position Tenor Mapped cash flow (market value) 

X IT000XXXXXX1 L Tenor_1 Sum_mapped_cashflows_bond_1 

X IT000XXXXXX1 L Tenor_2 Sum_mapped_cashflows_bond_1 

… … … … … 

Portfolio ISIN Position Tenor Mapped cash flow (market value) 

X IT000XXXXXX2 S Tenor_1 Sum_mapped_cashflows_bond_2 

X IT000XXXXXX2 S Tenor_2 Sum_mapped_cashflows_bond_2 

… … … … … 
 

For each sovereign among those subject to cash-flow mapping (i.e. Italy – nominal/real 

subsets, Spain – nominal/real subsets, Portugal and Ireland) it is possible to compute the 

sum of the market values mapped on each tenor of the relative ZC curve (with netting of 

potential long and short values mapped on the same tenor), by adding up all the market values 

of the ISINs constituting the specific sovereign sub-portfolio: 

Table 16: Cash-flow mapping per ZC curve  

Portfolio Issuer Tenor Total mapped cash flows (market value) 

X Y Tenor_1 Sum_mapped_cashflows_issuer_Y 

X Y Tenor_2 Sum_mapped_cashflows_issuer_Y 

… … … … 
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3 Price scenarios 

3.1 Scaling of the sovereign zero-coupon spot curve time series 

The ZC curves to which the scaling process is applied are all those employed to map the 

(market value of the) cash flows of the margined portfolio, i.e. relating to the issuers of the 

bonds in it. These are:  

• Italian nominal; 

• Italian real; 

• Spanish nominal; 

• Spanish real; 

• Irish nominal; 

• Portuguese nominal. 

All these curves will be taken starting from mid-2004 for complete availability reasons. 

The time series of each tenor of each reference ZC curve will have length equal to the lookback 

period (model parameter) plus: 

• the scaling window (model parameter) employed in the calculation of the EWMA 

volatilities;  

• the holding period (model parameter) employed in the calculation of the relative price 

returns. 

In case of ‘all available data’ lookback period this will obviously be equal to all available data – 

scaling window – holding period. 

If we call n the lookback period and t the scaling window, the panel data of a given ZC curve 

(assuming that the longest tenor has a duration of 30 years) can be generalized as follows: 

Table 17: ZC curve panel data 

n 3M 6M 1Y … 30Y 
1 x_1 % y_1 % v_1 % … w_1 % 

… … … … … … 

… … … … … … 

… … … … … … 

n + t + hp - 1 x_n+t+hp-1 % y_n+t+hp-1 % v_n+t+hp-1 % … w_n+t+hp-1 % 

n + t + hp x_n+t+hp % y_n+t+hp % v_n+t+hp % … w_n+t+hp % 
 

3.1.1 Conversion of the times series from rates to prices 

The above rate time series must be converted into price time series employing the following 

formulas: 
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ZC curve tenors with duration < 1 year: 

(1) price= 
100

(1+rate)d
 ; 

ZC curve tenors with duration >= 1 year: 

(2) price= 100*e-rate*d , 

with rate: rate% / 100 and d: duration (in years) of the tenor of the ZC curve whose rate time 

series is being converted into price time series. 

Table 18: Rates into prices conversion 

n 3M 6M 1Y … 30Y 

1 
100 / 

(1 + x_1) ^ 0,25 
100 / 

(1 + y_1) ^ 0,5 
100 * 

exp(-1 * v_1) 
… 

100 * 
exp(-30 * w_1) 

… … … … … … 

… … … … … … 

… … … … … … 

n + t + hp - 1 
100 / 

(1 + x_n+t+hp-
1) ^ 0,25 

100 / 
(1 + 

y_n+t+hp-1) ^ 
0,5 

100 * 
exp(-1 * 

v_n+t+hp-1) 
… 

100 * 
exp(-30 * 

w_n+t+hp-1) 

n + t + hp 
100 / 

(1 + x_n+t+hp) 
^ 0,25 

100 / 
(1 + 

y_n+t+hp) ^ 
0,5 

100 * 
exp(-1 * 

v_n+t+hp) 
… 

100 * 
exp(-30 * 

w_n+t+hp) 

 

3.1.2 Computation of the (unscaled) relative price returns 

Once the price time series of each tenor of each ZC curve has been computed, it is necessary 

to compute the (unscaled) relative price return time series as follows: 

(3) 𝑝𝑟𝑖𝑐𝑒_𝑟𝑒𝑡𝑢𝑟𝑛𝑡 =  
𝑝𝑟𝑖𝑐𝑒𝑡

𝑝𝑟𝑖𝑐𝑒𝑡−ℎ𝑝
− 1 . 

The time series computed this way has length equal to n + t. 

For example, consider the following rate time series: 

Date 1Y rate 
14/03/2017 -0,149% 

15/03/2017 -0,167% 

16/03/2017 -0,184% 

17/03/2017 -0,174% 

20/03/2017 -0,172% 

21/03/2017 -0,178% 

22/03/2017 -0,176% 

23/03/2017 -0,175% 

24/03/2017 -0,180% 

27/03/2017 -0,178% 

28/03/2017 -0,175% 



 

  

 

32 
 

29/03/2017 -0,183% 

30/03/2017 -0,176% 

31/03/2017 -0,180% 

03/04/2017 -0,189% 
 

The above rate time series is converted into a price time series employing formula (2): 

Date 1Y rate 1Y price 
14/03/2017 -0,149% 100,150 

15/03/2017 -0,167% 100,167 

16/03/2017 -0,184% 100,184 

17/03/2017 -0,174% 100,174 

20/03/2017 -0,172% 100,172 

21/03/2017 -0,178% 100,178 

22/03/2017 -0,176% 100,176 

23/03/2017 -0,175% 100,175 

24/03/2017 -0,180% 100,181 

27/03/2017 -0,178% 100,178 

28/03/2017 -0,175% 100,175 

29/03/2017 -0,183% 100,183 

30/03/2017 -0,176% 100,176 

31/03/2017 -0,180% 100,181 

03/04/2017 -0,189% 100,189 
 

Assuming a 5 day-holding period the relative price return time series can be represented as follows: 

Date 1Y rate 1Y price 1Y relative price return 
14/03/2017 -0,149% 100,150  

15/03/2017 -0,167% 100,167  

16/03/2017 -0,184% 100,184  

17/03/2017 -0,174% 100,174  

20/03/2017 -0,172% 100,172  

21/03/2017 -0,178% 100,178 0,029% 

22/03/2017 -0,176% 100,176 0,009% 

23/03/2017 -0,175% 100,175 -0,009% 

24/03/2017 -0,180% 100,181 0,007% 

27/03/2017 -0,178% 100,178 0,006% 

28/03/2017 -0,175% 100,175 -0,004% 

29/03/2017 -0,183% 100,183 0,007% 

30/03/2017 -0,176% 100,176 0,001% 

31/03/2017 -0,180% 100,181 0,000% 

03/04/2017 -0,189% 100,189 0,011% 
 

3.1.3 Computation of the EWMA volatility 

Given the relative price return time series computed as described above, it is then necessary to 

compute for each observation of the lookback period  the corresponding value of the volatility 

according to the EWMA methodology. 

In particular, a seed volatility is computed on the first scaling window t observations of the time series 

according to formula (10) of above   
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Cash-flow mapping section. 

For the following lookback period n observations of the time series the volatility of each 

observation is recursively computed according to the formula: 

(4) σi  =  √λσi−1
2 + (1 − λ)ri

2 

σ1  =  √λσ0
2 + (1 − λ)r1

2 

σ2  =  √λσ1
2 + (1 − λ)r2

2  =  √λ(λσ0
2 + (1 − λ)r1

2) + (1 − λ)r2
2 ,  

with λ: smoothing factor (comprised between 0 and 1); r: relative price return computed according 

to formula (3). Formula (4), which is a variant of the formula σi  =  √λσi−1
2 + (1 − λ)ri−1

2  , 

allows, as outlined at the beginning of the document, to weigh the observations based on the 

current volatility cluster. 

For example, consider a 11 day-scaling window, a 8 day-lookback period (evaluation date: 

15/04/2017, assuming last available ZC curve data is 14/04/2017) and a smoothing factor λ = 

0,94. Furthermore, consider the following relative price return time series: 

Date 
Relative price 

return 
EWMA volatility Notes 

21/03/2017 0,029% 

 
 
 
 
 
 
 
 
  

SCALING WINDOW 
 
 
 
 
 

* standard deviation of 
the observations between 

21/03/2017 and 
04/04/2017 

22/03/2017 0,009% 

23/03/2017 -0,009% 

24/03/2017 0,007% 

27/03/2017 0,006% 

28/03/2017 -0,004% 

29/03/2017 0,007% 

30/03/2017 0,001% 

31/03/2017 0,000% 

03/04/2017 0,011% 

04/04/2017 0,019% 0,010%* 

05/04/2017 0,010% 0,010% 

LOOKBACK PERIOD 
 
 

Formula (4) is applied 

06/04/2017 0,024% 0,011% 

07/04/2017 0,027% 0,013% 

10/04/2017 0,005% 0,013% 

11/04/2017 -0,014% 0,013% 

12/04/2017 -0,021% 0,013% 

13/04/2017 -0,029% 0,015% 

14/04/2017 -0,034% 0,017% 
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3.1.4 Scaled relative price returns 

Given the relative price return time series4 and the volatility computed according to the EWMA 

methodology outlined in the previous paragraph, it is then possible to compute the scaled 

relative price return time series. 

In particular, the scaling factor applied to each observation is computed according to the 

following formula (mid-volatility approach): 

(5) 𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑓𝑎𝑐𝑡𝑜𝑟𝑡 =  
𝜎𝑇+𝜎𝑡

2∗𝜎𝑡
 , 

with σT: EWMA volatility computed for the most recent observation of the time series 

(therefore, evaluation day - 1 day); σt: EWMA volatility computed for the specific 

observation which the scaling factor is applied to (full-volatility approach would have been 

characterized by the formula 𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑓𝑎𝑐𝑡𝑜𝑟𝑡 =  
𝜎𝑇

𝜎𝑡
). 

The scaling factor is applied to each observation of the relative price return time series according 

to the following formula: 

(6) 𝑠𝑐𝑎𝑙𝑒𝑑_𝑝𝑟𝑖𝑐𝑒_𝑟𝑒𝑡𝑢𝑟𝑛𝑡 =  𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑_𝑝𝑟𝑖𝑐𝑒_𝑟𝑒𝑡𝑢𝑟𝑛𝑡 ∗ 𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑓𝑎𝑐𝑡𝑜𝑟𝑡 

Consider the previous example time series (evaluation date: 15/04/2017): σT is equal to 

0,017% and the scaled relative price return time series is as follows: 

Date 
Unscaled relative price 

return 
EWMA volatility 

Scaled relative price 
return 

05/04/2017 0,010% 0,010% 0,014% 

06/04/2017 0,024% 0,011% 0,031% 

07/04/2017 0,027% 0,013% 0,031% 

10/04/2017 0,005% 0,013% 0,006% 

11/04/2017 -0,014% 0,013% -0,016% 

12/04/2017 -0,021% 0,013% -0,024% 

13/04/2017 -0,029% 0,015% -0,031% 

14/04/2017 -0,034% 0,017% -0,034% 

3.2 Price scenarios definition 

It is then necessary to define a series of price scenarios with length equal to the lookback period. 

Each price scenario is computed on the basis of the chosen holding period as the ratio between 

the observation for which the specific price scenario is being calculated and the hp day-earlier 

observation (e.g. if hp is equal to 5 days each price scenario is computed as the ratio between 

the current observation and the 5-day earlier observation): 

 
4 The part of the time series of interest is that post-scaling window. Its length is therefore equal to n (chosen 
lookback period). 
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(7) 𝑝𝑟𝑖𝑐𝑒_𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑡 =  
𝑝𝑟𝑖𝑐𝑒𝑡

𝑝𝑟𝑖𝑐𝑒𝑡−ℎ𝑝
 . 

Both scaled and unscaled price scenarios are computed. 

3.2.1 Scaled price scenarios 

In particular, the scaled price scenarios can be computed employing the scaled relative price return 

time series. Each relative price return is indeed already computed as 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑝𝑟𝑖𝑐𝑒_𝑟𝑒𝑡𝑢𝑟𝑛𝑡 =  
𝑝𝑟𝑖𝑐𝑒𝑡

𝑝𝑟𝑖𝑐𝑒𝑡−ℎ𝑝
–  1. One can thus compute the price scenario as: 

(8) 𝑠𝑐𝑎𝑙𝑒𝑑_𝑝𝑟𝑖𝑐𝑒_𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑡 = 𝑠𝑐𝑎𝑙𝑒𝑑_𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑝𝑟𝑖𝑐𝑒_𝑟𝑒𝑡𝑢𝑟𝑛𝑡 + 1 . 

It is possible to summarize the process for obtaining the scaled price scenarios the following 

way: 

Table 19: Scaled price scenarios computation 

Date 
Unscaled relative price 

return 
Scaled relative price 

return 
Scaled price scenario 

1 price_1 / price_1-hp - 1 
(price_1 / price_1-hp – 1) 

* scaling_factor_1 
(price_1 / price_1-hp – 1)  

* scaling_factor_1 + 1 

… … … … 

… … … … 

n price_n / price_n-hp - 1 
(price_n / price_n-hp – 1) 

* scaling_factor_n 
(price_n / price_n-hp – 1) 

* scaling_factor_n + 1 
 

The methodology for calculating the scaling factor is described in the previous section. 

Always considering the previous example, we therefore have: 

Date 
Scaled relative price 

return 
Scaled price scenario 

05/04/2017 0,014% 1,00014 

06/04/2017 0,031% 1,00031 

07/04/2017 0,031% 1,00031 

10/04/2017 0,006% 1,00006 

11/04/2017 -0,016% 0,99984 

12/04/2017 -0,024% 0,99976 

13/04/2017 -0,031% 0,99969 

14/04/2017 -0,034% 0,99966 
 

3.2.2 Unscaled price scenarios 

The unscaled price scenarios can instead be computed simply skipping, with reference to what 

outlined in the previous paragraph, the relative price return-scaling factor multiplication step. It is 

indeed sufficient to compute the price scenarios employing formula (7): 
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Table 20: Unscaled price scenarios computation 

Date Unscaled price scenario 

1 price_1 / price_1-hp 

… … 

… … 

n price_n / price_n-hp 
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4 Expected Shortfall 

The Expected Shortfall (ES) is a risk measure consisting in the average of the tail events of a 

given distribution. It is preferred to the Value at Risk (VaR) risk measure, which basically 

consists of the quantile of that distribution above which the tail actually ‘starts’, as it is 

coherent and more conservative. It is also called Conditional-VaR (C-VaR).  

The risk measure can either be undiversified or diversified, depending on whether it is computed 

‘per block’ (i.e. without inter-country diversification benefits) or ‘as a unique block’ (i.e. 

allowing those benefits). Practically speaking, in one case (the undiversified case) the country 

portfolios are revalued separately from one another in their set of historical scenarios and 

the respective risk measures are computed; in the other case (the diversified case) the portfolio 

is revalued as a whole and a unique risk measure is computed (therefore there will be a 

unique set of historical scenarios). 

Whatever the particular choice is, the current market value of a portfolio is revalued in a set 

of historical scenarios. These revaluations are then compared to the former and a set of 

profits/losses is obtained. This P&L distribution will be characterized by some extreme 

profits in one tail and some extreme losses in the other tail.  

4.1 Undiversified Expected Shortfall calculation 

4.1.1 Undiversified Expected Shortfall (per country) 

In order to compute the undiversified Expected Shortfall consider a simple hypothetical portfolio 

consisting of bonds issued by a single country, whose cash flows (at market value) are 

mapped on the first 3 tenors only of the reference ZC curve. The cash-flow mapping 

structure can be represented as follows: 

Table 21: Margined portfolio cash-flow mapping 

Tenor Cash flows mapped 

3M Cashflow_3M 

6M Cashflow_6M 

1Y Cashflow_1Y 
 

Consider also the following n (chosen lookback period) scaled / unscaled price scenarios defined 

according to the methodology outlined in the previous section: 

Table 22: Price scenarios 

Date 3M 6M 1Y 

1 Pricescenario_1_3M Pricescenario_1_6M Pricescenario_1_1Y 

2 Pricescenario_2_3M Pricescenario_2_6M Pricescenario_2_1Y 

… … … … 

n-1 Pricescenario_n-1_3M Pricescenario_n-1_6M Pricescenario_n-1_1Y 
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n Pricescenario_n_3M Pricescenario_n_6M Pricescenario_n_1Y 
 

The market value of the cash flows mapped on each relevant tenor of the ZC curve must be 

revalued in each price scenario: 

Table 23: Cash flows revaluation per tenor 

Date 3M 6M 1Y 

1 
Pricescenario_1_3M * 

Cashflow_3M 
Pricescenario_1_6M * 

Cashflow_6M 
Pricescenario_1_1Y * 

Cashflow_1Y 

2 
Pricescenario_2_3M * 

Cashflow_3M 
Pricescenario_2_6M * 

Cashflow_6M 
Pricescenario_2_1Y * 

Cashflow_1Y 

… … … … 

n-1 
Pricescenario_n-1_3M * 

Cashflow_3M 
Pricescenario_n-1_6M * 

Cashflow_6M 
Pricescenario_n-1_1Y * 

Cashflow_1Y 

n 
Pricescenario_n_3M * 

Cashflow_3M 
Pricescenario_n_6M * 

Cashflow_6M 
Pricescenario_n_1Y * 

Cashflow_1Y 
 

Once the revalued (per tenor and price scenario) market value of each cash flow has been 

computed, it is possible to compute the revalued market value of the entire portfolio subject 

to margining in each price scenario: 

Table 24: Portfolio revaluation 

Date Revalued portfolio 

1 

Pricescenario_1_3M * 
Cashflow_3M + 

Pricescenario_1_6M * 
Cashflow_6M + 

Pricescenario_1_1Y * 
Cashflow_1Y 

2 

Pricescenario_2_3M * 
Cashflow_3M + 

Pricescenario_2_6M * 
Cashflow_6M + 

Pricescenario_2_1Y * 
Cashflow_1Y 

… … 

n-1 

Pricescenario_n-1_3M * 
Cashflow_3M + 

Pricescenario_n-1_6M * 
Cashflow_6M + 

Pricescenario_n-1_1Y * 
Cashflow_1Y 

n 

Pricescenario_n_3M * 
Cashflow_3M + 

Pricescenario_n_6M * 
Cashflow_6M + 

Pricescenario_n_1Y * 
Cashflow_1Y 

 

Having the revalued market value of the portfolio subject to margining in each price scenario 

and its current market value it is possible to compute its profit/loss in each price scenario: 
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Table 25: Portfolio profit/loss per price scenario 

Date Revalued portfolio Current portfolio Profit/Loss 

1 

Pricescenario_1_3M * 
Cashflow_3M + 

Pricescenario_1_6M * 
Cashflow_6M + 

Pricescenario_1_1Y * 
Cashflow_1Y =  

Revalued market value 1 

Current market value 
Revalued market value 1 – 

Current market value 

2 

Pricescenario_2_3M * 
Cashflow_3M + 

Pricescenario_2_6M * 
Cashflow_6M + 

Pricescenario_2_1Y * 
Cashflow_1Y =  

Revalued market value 2 

Current market value 
Revalued market value 2 – 

Current market value 

… … … … 

n-1 

Pricescenario_n-1_3M * 
Cashflow_3M +  

Pricescenario_n-1_6M * 
Cashflow_6M +  

Pricescenario_n-1_1Y * 
Cashflow_1Y =  

Revalued market value n-1 

Current market value 
Revalued market value n-1 – 

Current market value 

n 

Pricescenario_n_3M * 
Cashflow_3M +  

Pricescenario_n_6M * 
Cashflow_6M +  

Pricescenario_n_1Y * 
Cashflow_1Y =  

Revalued market value n 

Current market value 
Revalued market value n – 

Current market value 

 

Having the portfolio profit/loss in each price scenario it is possible to compute the portfolio 

undiversified Expected Shortfall according to two different approaches: 

• Single tail approach (worst losses): 

The single tail approach implies that only losses are considered. These losses are sorted from 

the worst to the less serious and, given the chosen confidence level, the portfolio undiversified 

Expected Shortfall is computed as average of the tail observations. 

For example, consider a 5 day-lookback period, a 80% confidence level and the following set of 

portfolio profits/losses (net long position): 

Date Revalued portfolio Current portfolio Profit/Loss 

1 10 10 0 

2 8 10 -2 

3 12 10 2 

4 7 10 -3 

5 7,5 10 -2,5 
 

We sort the profits/losses from the worst loss to best profit and obtain: 
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Date Revalued portfolio Current portfolio Gain/Loss 

4 7 10 -3 

5 7,5 10 -2,5 

2 8 10 -2 

1 10 10 0 

3 12 10 2 
 

It is then necessary to compute the number of observations in the tail of the P&L 

distribution given the chosen lookback period and confidence level, as number of observations5 * (1 – 

confidence level), rounding the result to the nearest integer. In the example the number of tail 

observations is then equal to 1. The undiversified Expected Shortfall of the portfolio is equal to 

the average of the tail observations (in absolute terms). In the example it amounts to 3. 

• Double tail approach (worst absolute variations): 

The double tail approach implies that all variations are considered, in absolute terms. These 

absolute variations are sorted from the greatest to the smallest and, given the chosen 

confidence level, the portfolio undiversified Expected Shortfall is computed as average of tail 

observations. 

For example, consider a 5 day-lookback period, a 80% confidence level and the following set of 

portfolio absolute variations: 

Date Revalued portfolio Current portfolio 
Profit/Loss absolute 

value 

1 10 10 0 

2 8 10 2 

3 12 10 2 

4 7 10 3 

5 7,5 10 2,5 
 

We sort the absolute variations from the greatest to the smallest and obtain: 

Date Revalued portfolio Current portfolio 
Profit/Loss absolute 

value 

4 7 10 3 

5 7,5 10 2,5 

2 8 10 2 

3 12 10 2 

1 10 10 0 
 

It is then necessary to calculate the number of tail observations given the chosen lookback 

period and confidence level, as number of observations6 * (1 – confidence level), rounding the result to 

the nearest integer. In the example the number of tail observations is then equal to 1. The 

 
5 Equal to the lookback period. 
6 Equal to the lookback period. 
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undiversified Expected Shortfall of the portfolio is equal to the average of the selected 

observations, in the example equal to 3. 

In case the portfolio contains bonds issued by different sovereigns, the methodology 

described above must be replicated for each sub-portfolio (consisting of all and only the 

ISINs issued by a specific country and therefore mapped on a specific ZC curve). The 

portfolio undiversified Expected Shortfall is then equal to the sum of the undiversified Expected 

Shortfalls of each sub-portfolio. 

It is worthwhile mentioning that for countries such as Italy and Spain having both nominal 

and real ZC curves the adopted country-approach would be the diversified one. Therefore, Italian 

nominal and real sub-portfolios would lead to a unique diversified country Expected Shortfall; the same 

can be said about Spain; finally, all country Expected Shortfalls would be summed up in an undiversified 

way. 

4.1.2 Undiversified Expected Shortfall per sovereign zero-coupon bond tenor 

Looking at the undiversified Expected Shortfall from a different and narrower (than per country) 

point of view, it is possible to compute the undiversified Expected Shortfall per ZC curve tenor. 

Going back to Table 23, instead of proceeding as described further, the revalued market 

value per tenor-price scenario combination is directly compared to the market value of the sub-

portfolio mapped on that specific tenor. This means that an undiversified Expected Shortfall for 

each tenor of the ZC curves involved in the cash-flow mapping can be computed. 

For example, consider the 3 month tenor in Table 23: 

Date 3M 

1 
Pricescenario_1_3M * 

Cashflow_3M 

2 
Pricescenario_2_3M * 

Cashflow_3M 

… … 

n-1 
Pricescenario_n-1_3M * 

Cashflow_3M 

n 
Pricescenario_n_3M * 

Cashflow_3M 
 

The P&L distribution for that tenor can be computed as follows: 

Date Revalued tenor Current tenor Profit/Loss 

1 
Pricescenario_1_3M * 

Cashflow_3M = 
Revalued market value 1 

Cashflow_3M 
Revalued market value 1 – 

Cashflow_3M 

2 
Pricescenario_2_3M * 

Cashflow_3M = 
Revalued market value 2 

Cashflow_3M 
Revalued market value 2 – 

Cashflow_3M 

… … … … 

n-1 
Pricescenario_n-1_3M * 

Cashflow_3M = 
Cashflow_3M 

Revalued market value n-1 – 
Cashflow_3M 
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Revalued market value n-1 

n 
Pricescenario_n_3M * 

Cashflow_3M = 
Revalued market value n 

Cashflow_3M 
Revalued market value n – 

Cashflow_3M 

 

The calculation of the undiversified Expected Shortfall per single tenor follows the same logic 

(including the single tail / double tail approach distinction) as that described in the previous 

paragraph. 

4.1.3 Diversified Expected Shortfall calculation per country 

As opposed to the undiversified Expected Shortfall calculation outlined above, the calculation of 

the diversified Expected Shortfall is characterized by the acknowledgement of the investment 

diversification benefit to the Clearing Member (of course only in case its portfolio contains 

bonds issued by more than one country). 

For example, consider the following cash flow structure: 

Table 26: Margining portfolio cash-flow mapping (2) 

Tenor Cash flows mapped 

3M_ITA Cashflow_3M_ITA 

6M_SPA Cashflow_6M_SPA 
 

Consider also the following n (equal to the chosen lookback period) scaled / unscaled price scenarios 

defined according to the methodology outlined in previous section: 

Table 27: Price scenarios (2) 

Date 3M_ITA 6M_SPA 

1 Pricescenario_1_3M_ITA Pricescenario_1_6M_SPA 

2 Pricescenario_2_3M_ITA Pricescenario_2_6M_SPA 

… … … 

n-1 Pricescenario_n-1_3M_ITA Pricescenario_n-1_6M_SPA 

n Pricescenario_n_3M_ITA Pricescenario_n_6M_SPA 
 

The cash flows mapped on each relevant tenor of each reference ZC curve are revalued in 

each price scenario: 

Table 28: Cash flows revaluation per tenor (2) 

Date 
Revalued ITA sub-

portfolio 
Revalued SPA sub-

portfolio 

1 
Pricescenario_1_3M_ITA * 

Cashflow_3M_ITA 
Pricescenario_1_6M_SPA * 

Cashflow_6M_SPA 

2 
Pricescenario_2_3M_ITA * 

Cashflow_3M_ITA 
Pricescenario_2_6M_SPA * 

Cashflow_6M_SPA 

… … … 

n-1 
Pricescenario_n-1_3M_ITA 

* Cashflow_3M_ITA 
Pricescenario_n-1_6M_SPA * 

Cashflow_6M_SPA 

n Pricescenario_n_3M_ITA * Pricescenario_n_6M_SPA * 
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Cashflow_3M_ITA Cashflow_6M_SPA 
 

Since in this example each sub-portfolio consists of cash flows mapped on a single tenor of a 

ZC curve, Table 28 already represents the revalued country sub-portfolio. If there were cash 

flows mapped on more than one tenor per ZC curve, for each sub-portfolio it would have 

been necessary to make a calculation similar to that shown in Table 24. 

The revalued market value of the entire portfolio in each price scenario is computed the 

following way: 

Table 29: Cash flows revaluation per tenor 

Date 
Revalued ITA sub-

portfolio 
Revalued SPA sub-

portfolio 
Revalued portfolio 

1 
Pricescenario_1_3M_ITA * 

Cashflow_3M_ITA 
Pricescenario_1_6M_SPA * 

Cashflow_6M_SPA 

Pricescenario_1_3M_ITA * 
Cashflow_3M_ITA + 

Pricescenario_1_6M_SPA * 
Cashflow_6M_SPA 

2 
Pricescenario_2_3M_ITA * 

Cashflow_3M_ITA 
Pricescenario_2_6M_SPA * 

Cashflow_6M_SPA 

Pricescenario_2_3M_ITA * 
Cashflow_3M_ITA + 

Pricescenario_2_6M_SPA * 
Cashflow_6M_SPA 

… … …  

n-1 
Pricescenario_n-1_3M_ITA 

* Cashflow_3M_ITA 
Pricescenario_n-1_6M_SPA 

* Cashflow_6M_SPA 

Pricescenario_n-1_3M_ITA 
* Cashflow_3M_ITA + 

Pricescenario_n-1_6M_SPA 
* Cashflow_6M_SPA 

n 
Pricescenario_n_3M_ITA * 

Cashflow_3M_ITA 
Pricescenario_n_6M_SPA * 

Cashflow_6M_SPA 

Pricescenario_n_3M_ITA * 
Cashflow_3M_ITA + 

Pricescenario_n_6M_SPA * 
Cashflow_6M_SPA 

 

The way to compute the diversified Expected Shortfall of the portfolio is the same as that 

described above (the distinction between single tail and double tail approaches still applying).  

4.1.4 Use of Spectral Risk Measures (SRMs) 

We anticipated the Expected Shortfall is the average of a set of tail events. The ‘plain’ Expected 

Shortfall is indeed a simple average, i.e. each of the n tail events has a weight of 1/n. However, 

it is also possible using non-uniform weighting schemes.  

In particular, long lookback periods may imply very diluted tails. When the all available data 

lookback period is chosen, given a fixed confidence level, the number of observations in the tails is 

destined to increase every passing day. Since the Expected Shortfall represents the average of 

these observations, a tail which keeps diluting implies an Expected Shortfall risk measure less 

and less conservative. A trade-off therefore exists between longer lookback periods (allowing to 

always take into account past significant stress events) and conservativeness of risk measures. 

Spectral risk measures allow to differently weight the observations in the tails by assigning more 

importance to the most extreme ones. 
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In particular, moving along the P&L distribution (e.g. moving from the smallest profit/loss 

in the tail to the biggest one) spectral risk measures allow to address the increasing risk-aversion 

of the CCP by assigning higher and higher weights. 

In order to choose the SRM function two principles are taken into consideration: 

1) the Risk Appetite Framework of the CCP must be satisfied, meaning that the results of 

the back-tests (both at ISIN and at Clearing Member portfolio level) must preserve the 

desired coverage level; 

2) the anti-procyclicality policy of the CCP must be respected, meaning that possible 

increases in computed margin requirements must be checked against any anti pro-

cyclicality thresholds. 

Considered the two conditions above, a spectral risk measure that is both conservative (as per 

point 1 above) and not too punitive during crises (as per point 2) is chosen. 

The chosen spectral risk measure works as follows: 

denoting by i = 1, … , n the tail events (where 1 corresponds to the smallest profit/loss and 

n to the biggest one), weights 𝑤𝑖 are given by: 

(1) w1 =  x; 

x−1 =
srm_factor(tail_lenght +1)−srm_factor∗(tail_lenght+1) +tail_lenght

(1−srm_factor)2   

w2  =  w1 + srm_factor ∗ w1; 

 w3 =  w2 + srm_factor ∗ (w2 − w1); 

… ; 

 wn  =  wn−1 + srm_factor ∗ (wn−1 − wn−2). 

The weights must obviously sum to 1.: 

Once the value of x is retrieved, all weights can be recursively retrieved. The weights are 

then applied to the observations in the tail in order to retrieve the SRM Expected Shortfall. 

Consider as an example a 11 extreme events tail, obtained combining the confidence level to the 

lookback period, and a SRM factor equal to 1,35. 

Table 30: Profits/losses tail observations 

n Profit/Loss 

1 100 

2 96 

3 93 
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4 90 

5 88 

6 85 

7 82 

8 78 

9 75 

10 70 

11 67 
 

The ‘plain’ Expected Shortfall of such distribution amounts to 84 (average of the 10 

observations). 

The SRM Expected Shortfall would instead be defined through the following steps: 

a) definition of the first weight w1=x; 

b) recursive definition of all the other weights w2, …, w11: 

 

n Profit/Loss Weight 

1 100 0.29100 

2 96 0.21267 

3 93 0.15465 

4 90 0.11167 

5 88 0.07983 

6 85 0.05625 

7 82 0.03878 

8 78 0.02584 

9 75 0.01626 

10 70 0.00916 

11 67 0.00390 

  Sum of weights = 1 

 

c) computation of the weighted profits/losses by multiplying each observation by its 

weight: 

n Profit/Loss Weight 
Weighted 

Profit/Loss 

1 100 0.29100 29.10 

2 96 0.21267 20.42 

3 93 0.15465 14.38 

4 90 0.11167 10.05 

5 88 0.07983 7.03 

6 85 0.05625 4.78 

7 82 0.03878 3.18 

8 78 0.02584 2.02 

9 75 0.01626 1.22 

10 70 0.00916 0.64 

11 67 0.00390 0.26 

  Sum of weights = 1  
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d) computation of the SRM Expected Shortfall summing all weighted profits/losses 

(amounting to 93.07). 

The SRM Expected Shortfall yields a more conservative result with respect to the ‘plain’ 

Expected Shortfall, as expected. 


